当前位置:主页 > 列表页 > 正文

ZKML——迈向可验证人工智能的未来

2023-05-30 14:03 | 出处: 行业前沿

原文:Avant Blockchain Capital

编译:GWEI Research

带有提示的 text2img 模型的结果:“AI+Blockchain”

背景

在过去的几个月里,人工智能行业出现了多项突破。 GPT4 和 Stable Diffusion 等模型正在改变人们生成软件和互联网以及与之交互的方式。

尽管这些新的 AI 模型具有令人印象深刻的功能,但一些人仍然担心 AI 的不可预测性和一致性问题。例如,在线服务领域缺乏透明度,其中大部分后端工作由 AI 模型运行。验证这些模型是否以预期的方式运行是一项挑战。此外,用户隐私也是一个问题,因为我们提供给模型 API 的所有数据都可用于改进 AI 或被黑客利用。

ZKML 可能是解决这些问题的新方法。通过将可验证和无需信任的属性注入机器学习模型,区块链和 ZK 技术可以形成 AI 对齐的框架。


什么是 ZKML


本文中的零知识机器学习(ZKML)是指在不暴露模型输入或模型参数的情况下,使用zkSNARK(一种零知识证明)来证明机器学习推理的正确性。根据隐私信息的不同,ZKML 的用例可以分为以下类型:

公共模型+私有数据:

私有模型+公共数据:

公开模型+公开数据:

由于 zkSNARK 将成为加密世界的一项非常重要的技术,ZKML 也有可能改变加密领域。通过在智能合约中加入AI能力,ZKML可以解锁更复杂的链上应用。这种集成在 ZKML 社区中被描述为“赋予区块链眼睛”。


技术瓶颈

然而,ZK-ML 带来了一些当前必须解决的技术挑战。

量化:ZKP 在场上工作,但神经网络在浮点数中训练。这意味着为了使神经网络模型 zk/blockchain 友好,它需要转换为具有完整计算跟踪的固定点算术表示。这可能会牺牲模型性能,因为参数的精度较低。

跨语言翻译:神经网络 AI 模型是用 python 和 cpp 编写的,而 ZKP 电路需要 r​​ust。所以我们需要一个翻译层来将模型转换为基于 ZKP 的运行时。通常这种类型的翻译层是模型特定的,很难设计一个通用的。

ZKP 的计算成本:ZKP 的成本基本上会比原来的 ML 计算高很多。根据 Modulus labs 的实验,对于一个 20M 参数的模型,根据不同的 ZK 证明系统,生成证明需要 1-5 分钟以上的时间,内存消耗在 20-60GB 左右。

智能的成本 — Modulus Labs

现状

即使面临这些挑战,我们也看到 ZKML 引起了加密社区的极大兴趣,并且有一些优秀的团队正在探索这一领域。


基础设施


模型编译器

由于 ZKML 的主要瓶颈是将 AI 模型转换为 ZK 电路,一些团队正在研究 ZK 模型编译器等基础层。从 1 年前的逻辑回归模型或简单的 CNN 模型开始,该领域已经快速进入更复杂的模型。

EZKL 项目现在支持高达 100mm 参数的模型。它使用 ONNX 格式和 halo2 ZKP 系统。该库还支持仅提交模型的一部分。
ZKML库已经支持GPT2、Bert和diffusion模型的ZKP!

ZKVM

ZKML 编译器也属于一些更通用的零知识虚拟机领域。

Risc Zero是一个使用开源RiscV指令集的zkVM,因此可以支持c++和rust的ZKP。这个 zkDTP 项目展示了如何将决策树 ML 模型转换为 Rust 并在 Risc Zero 上运行。
我们还看到一些团队正在尝试通过 Startnet(吉萨)和 Aleo(零重力)将 AI 模型带到链上。


应用

除了基础设施,其他团队也开始探索 ZKML 的应用

Defi:

DeFi 用例的一个示例是 AI 驱动的金库,其中机制由 AI 模型而不是固定策略定义。这些策略可以利用链上和链下数据来预测市场趋势并执行交易。 ZKML 保证链上模型一致。这可以使整个过程自动化且无需信任。 Mondulus Labs 正在构建 RockyBot。该团队训练了一个链上 AI 模型来预测 ETH 价格,并构建了一个智能合约来自动与该模型进行交易。

其他潜在的 DeFi 用例包括 AI 支持的 DEX 和借贷协议。预言机还可以利用 ZKML 提供从链下数据生成的新型数据源。

Gaming:

Modulus labs 推出了一款基于 ZKML 的国际象棋游戏 Leela,所有用户都可以与一个由 ZK 验证的 AI 模型提供支持的机器人一起玩。人工智能能力可以为现有的完全链上游戏带来更多的交互功能。

NFT/创作者经济:

EIP-7007:该 EIP 提供了一个接口来使用 ZKML 来验证 AI 为 NFT 生成的内容是否确实来自具有特定输入(提示)的特定模型。该标准可以启用 AI 生成的 NFT 集合,甚至可以为新型创作者经济提供动力。

EIP-7007 项目工作流程

Identity:

Wordcoin 项目正在提供基于用户生物识别信息的人性证明解决方案。该团队正在探索使用 ZKML 让用户以无需许可的方式生成 Iris 代码。当生成 Iris 代码的算法升级后,用户可以自行下载模型并生成证明,而无需去 Orb 站。


采用的关键

考虑到人工智能模型零知识证明的高成本。我们认为 ZKML 的采用可以从一些信任成本高的加密本机用例开始。

我们应该考虑的另一个市场是数据隐私非常重要的行业,例如医疗保健行业。为此,还有其他解决方案,如联邦学习和安全 MPC,但 ZKML 可以利用区块链的可扩展激励网络。

更广泛地大规模采用 ZKML 可能取决于人们失去对现有大型 AI 提供商的信任。会不会出现一些事件,提高整个行业的意识,促使用户考虑可验证的 AI 技术?


总结

ZKML 仍处于早期阶段,有许多挑战需要克服。但随着 ZK 技术的改进,我们认为人们很快就会发现几个具有很强产品市场契合度的 ZKML 用例。这些用例一开始可能看起来很适合。但随着中心化人工智能的力量越来越大,渗透到每一个行业乃至人类生活中,人们可能会在ZKML中发现更大的价值。

相关文章